The reduction types of absolutely simple abelian threefolds with complex multiplication

Pınar Kılıçer (p.kilicer@rug.nl)

Let E be an elliptic curve defined over a number field k. We say that E has complex multiplication (CM) if the endomorphism ring $\operatorname{End}_{\bar{k}}(E)$ of E over \bar{k} is strictly larger than \mathbb{Z}. In that case, $\operatorname{End}_{\bar{k}}(E)$ is isomorphic to an order \mathcal{O} in an imaginary quadratic field K.

If E has complex multiplication, then over a finite field extension k^{\prime} of k, the elliptic curve E / k^{\prime} has good reduction at every prime of $\mathcal{O}_{k^{\prime}}$; we say that E has potential good reduction everywhere (at every prime). Suppose that E has complex multiplication by the ring of integers \mathcal{O}_{K} of K. Let $\mathfrak{p} \subset \mathcal{O}_{k^{\prime}}$ be a prime ideal lying above a rational prime p. Then the reduction $E_{\mathfrak{p}}:=E \bmod \mathfrak{p}$ is

- ordinary if and only if p completely splits in K;
- supersingular if and only if p is ramified or inert in K.

In this project we will be interested in a similar classification for absolutely simple abelian threefolds with complex multiplication. In the case of abelian surfaces, the classification is given by Goren-Lauter [2].

An absolutely simple abelian variety A / k of dimension g is said to have complex multiplication if the endomorphism ring $\operatorname{End}_{\bar{k}}(A)$ is an order in a $C M$ field K of degree $2 g$. As in the elliptic curve case, an abelian variety A with complex multiplication has potential good reduction everywhere, meaning that A has good reduction at every prime over a finite extension k^{\prime} of the base field k.

Suppose that k^{\prime} is a finite extension of k over which an abelian variety A with CM has good reduction everywhere. If A is absolutely simple and has CM by the maximal order of a CM field K then the reduction type of A at a prime $\mathfrak{p} \subset \mathcal{O}_{k^{\prime}}$ is closely related to the decomposition type of $p:=\mathfrak{p} \cap \mathbb{Z}$ in K / \mathbb{Q}. Studying the decomposition types of primes in sextic CM fields will be the first step towards the classification. When K / \mathbb{Q} is a cyclic extension, the classification is given in [3, Proposition 4.1] up to isogeny and the detailed proof of this proposition is given in the master thesis of Dogger [1, Proposition 4.23].

For each prime decomposition type, we will determine the endomorphism algebra of the reduction $A_{\mathfrak{p}}$ of A at primes \mathfrak{p} of this type, and its corresponding p-rank and a-number. We will also look at some explicit examples, such as Jacobians of genus-3 curves.

$\underline{\text { Remarks for the participants: }}$

- If you are not familiar with number fields, you should at least study Chapters $1,2,3$ and 8 of Stevenhagen [7] or related chapters of any number theory book.
- If you are not familiar with abelian varieties, watching the videos of Anna Somoza would be a good start: https://www.carmin.tv/fr/collections/anna-somoza-complex-abelian-varieties
- If you are not familiar with CM theory, you may read the first chapter of the PhD thesis of Streng 8]. For a detailed study, you may study Milne [5], Lang [4, Shimura-Taniyama [6].
- A classification of p-ranks of abelian threefolds can be found in the master thesis of Dogger [1].
- A more detailed project description will be provided to the participants.

References

[1] Floor Dogger. Classifying abelian threefolds of p-rank 0, 1, 2 and 3. Master's thesis, University of Groningen, 2021. https://openaccess.leidenuniv.nl/handle/1887/15572.
[2] Eyal Z. Goren and Kristin E. Lauter. Genus 2 curves with complex multiplication. Int. Math. Res. Notices, 2011. Published online April 12, 2011, doi:10.1093/imrn/rnr052.
[3] Pınar Kılıçer, Hugo Labrande, Reynald Lercier, Christophe Ritzenthaler, Jeroen Sijsling, and Marco Streng. Plane quartics over \mathbb{Q} with complex multiplication. Acta Arith., 185(2):127-156, 2018.
[4] Serge Lang. Complex multiplication, volume 255 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1983.
[5] James S. Milne. Complex Multiplication (version 0.10), 2020. Available at www.jmilne.org/math/.
[6] Goro Shimura and Yutaka Taniyama. Complex multiplication of abelian varieties and its applications to number theory, volume 6 of Publications of the Mathematical Society of Japan. The Mathematical Society of Japan, Tokyo, 1961.
[7] Peter Stevenhagen. Number Rings. http://websites.math.leidenuniv.nl/algebra/ant.pdf, 2019.
[8] Marco Streng. Complex Multiplication on Abelian Surfaces. PhD thesis, Leiden University, 2010. https: //openaccess.leidenuniv.nl/handle/1887/15572.

